Part Number Hot Search : 
70000 X202C D1835 4511BD SHGM1430 63E6FS SM626HRR LTC1285
Product Description
Full Text Search
 

To Download R1211N002A Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 2001.8.30
Step-up DC/DC Controller
R1211X Series
s OUTLINE
The R1211X Series are CMOS-based PWM step-up DC/DC converter controllers with low supply current. Each of the R1211X Series consists of an oscillator, a PWM control circuit, a reference voltage unit, an error amplifier, a reference current unit, a protection circuit, and an under voltage lockout (UVLO) circuit. A low ripple, high efficiency step-up DC/DC converter can be composed of this IC with some external components, or an inductor, a diode, a power MOSFET, divider resisters, and capacitors. Phase compensation has been made internally in the R1211X002B/D Series, while phase compensation can be made externally as for R1211X002A/C Series. B/D version has stand-by mode. Max duty cycle is internally fixed typically at 90%. Soft start function is built-in, and Soft-starting time is set typically at 9ms(A/B, 700kHz version) or 10.5ms(C/D, 300kHz version). As for the protection circuit, after the soft-starting time, if the maximum duty cycle is continued for a certain period, the R1211X Series latch the external driver with its off state, or Latch-type protection circuit works. The delay time for latch the state can be set with an external capacitor. To release the protection circuit, restart with power-on (Voltage supplier is equal or less than UVLO detector threshold level), or once after making the circuit be stand-by with chip enable pin and enable the circuit again.
s FEATURES
q Standby Current * * * * * * * * * * * * * * * * * TYP. 0A (for B/D version) q Input Voltage Range * * * * * * * * * * * * * * * 2.5V to 6.0V q Built-in Latch-type Protection Function (Output Delay Time can be set with an external capacitor) q Two Options of Basic Oscillator Frequency * * 300kHz, 700kHz q Max Duty Cycle * * * * * * * * * * * * * * * * * * Typ. 90% q High Reference Voltage Accuracy * * * * * * * 1.5% q U.V.L.O. Threshold level * * * * * * * * * * * * * Typ. 2.2V (Hysteresis TYP. 0.13V) q Small Package * * * * * SOT-23-6W or thin (package height MAX. 0.85mm) SON-6 (Under Development)
s APPLICATIONS
q Constant Voltage Power Source for portable equipment. q Constant Voltage Power Source for LCD and CCD.
Rev. 1.10
-1-
s BLOCK DIAGRAMS
Version A
VFB
OSC
DTC
EXT
AMPOUT
Vref
VIN
UVLO
GND
Latch
DELAY
Version B
VFB
OSC
DTC
EXT
VIN
Vref
UVLO
GND
CE
Chip Enable Latch
DELAY
Rev. 1.10
-2-
s SELECTION GUIDE
In the R1211X Series, the oscillator frequency, the optional function, and the package type for the ICs can be selected at the user's request. The selection can be made with designating the part number as shown below;
R1211X002X-TR
a
Code a
b
b
Contents Designation of Package Type: D: SON-6 N: SOT23-6W Designation of Optional Function A : 700kHz, with AMPOUT pin (External Phase Compensation Type) B : 700 kHz, with CE pin (Internal Phase Compensation Type, with Stand-by) C : 300kHz, with AMPOUT pin (External Phase Compensation Type) D : 300kHz, with CE pin (Internal Phase Compensation Type, with Stand-by)
s PIN CONFIGURATIONS SON-6
6
SOT-23-6W
5 4
EXT 1 DELAY AMPOUT/CE (MARK SIDE) 6
GND
VIN
2
GND
VFB
5
(MARK SIDE)
3
EXT
VIN
4
DELAY
AMPOUT/CE
VFB
1
2
3
Rev. 1.10
-3-
s PIN DESCRIPTIONS
Pin No. SON6 1 2 3 4 5 6 Symbol SOT23-6W 1 DELAY 5 GND 6 EXT 4 VIN 3 VFB 2 AMPOUT or CE Description Pin for External Capacitor (for Setting Output Delay of Protection) Ground Pin External FET Drive Pin (CMOS Output) Power Supply Pin Feedback Pin for monitoring Output Voltage Amplifier Output Pin(A/C Version) or Chip Enable Pin(B/D Version, Active at "H")
s ABSOLUTE MAXIMUM RATINGS
Symbol VIN VEXT VDLY VAMP VCE VFB IAMP IEXT PD Topt Tstg Item VIN Pin Voltage EXT Pin Output Voltage DELAY Pin Voltage AMPOUT Pin Voltage CE Pin Input Voltage VFB Pin Voltage AMPOUT Pin Current EXT Pin Inductor Drive Output Current Power Dissipation Operating Temperature Range Storage Temperature Range Rating 6.5 -0.3VIN+0.3 -0.3VIN+0.3 -0.3VIN+0.3 -0.3VIN+0.3 -0.3VIN+0.3 10 50 250 -40+85 -55+125 Unit V V V V V V mA mA mW C C
Rev. 1.10
-4-
s ELECTRICAL CHARACTERISTICS
qR1211X002A Symbol Item VIN Operating Input Voltage VFB VFB Voltage Tolerance VFB/ VFB Voltage Temperature Coefficient T IFB VFB Input Current fOSC Oscillator Frequency fOSC/ Oscillator Frequency Temperature Coefficient T IDD1 Supply Current 1 maxdty Maximum Duty Cycle REXTH EXT "H" ON Resistance REXTL IDLY1 IDLY2 VDLY TSTART VUVLO1 VUVLO2 IAMP1 IAMP2 EXT "L" ON Resistance Delay Pin Charge Current
Delay Pin Discharge Current
Delay Pin Detector Threshold
Conditions VIN=3.3V -40C Topt 85C VIN=6V, VFB=0V or 6V VIN=3.3V, VDLY=VFB=0V -40C Topt 85C VIN=6V, VDLY=VFB=0V, EXT at no load VIN=3.3V, EXT "H" side VIN=3.3V, IEXT=-20mA VIN=3.3V, IEXT=20mA VIN=3.3V, VDLY=VFB=0V VIN=VFB=2.5V, VDLY=0.1V VIN=3.3V, VFB=0V, VDLY=0V2V VIN=3.3V at 90% of rising edge VIN=3.3V0V, VDLY=VFB=0V VIN=0V3.3V, VDLY=VFB=0V VIN=3.3V, VAMP=1V, VFB=0.9V VIN=3.3V, VAMP=1V, VFB=1.1V
MIN. 2.5 0.985
TYP. 1.000 150
(Topt=25C) MAX. Unit 6.0 V 1.015 V ppm/C 0.1 805 A kHz kHz/C A % A mA V ms V V mA A
-0.1 595
700 1.4 600 90 5 3
82
900 94 10 6 7.5 9.0 1.05 13.5 2.3 0.18 1.50 90
2.5 2.5 0.95 4.5 2.1 0.08 0.45 30
5.0 5.5 1.00 9.0 2.2 0.13 0.90 60
Soft-start Time UVLO Detector Threshold UVLO Detector Hysteresis AMP "H" Output Current AMP "L" Output Current
Rev. 1.10
-5-
qR1211X002B Symbol VIN VFB VFB/ T IFB fOSC fOSC/ T IDD1
Item
Conditions
MIN. 2.5
TYP.
(Topt=25C) MAX. Unit 6.0 V V ppm/C 0.1 A kHz kHz/C 900 94 10 6 7.5 9.0 1.05 13.5 2.3 0.18 1 0.5 0.5 0.3 A % A mA V ms V V A A A V V
Operating Input Voltage VFB Voltage Tolerance VFB Voltage Temperature Coefficient VFB Input Current Oscillator Frequency Oscillator Frequency Temperature Coefficient Supply Current 1 VIN=3.3V -40C Topt 85C VIN=6V, VFB=0V or 6V VIN=3.3V, VDLY=VFB=0V -40C Topt 85C VIN=6V, VDLY=VFB=0V, EXT at no load VIN=3.3V, EXT "H" side VIN=3.3V, IEXT=-20mA VIN=3.3V, IEXT=20mA
0.985
1.000 150
1.015
-0.1 595 700 1.4 600 82 90 5 3 2.5 2.5 0.95 4.5 2.1 0.08 -0.5 -0.5 1.5 5.0 5.5 1.00 9.0 2.2 0.13 0
805
maxdty Maximum Duty Cycle REXTH REXTL IDLY1 IDLY2 VDLY TSTART VUVLO1 VUVLO2 ISTB ICEH ICEL VCEH VCEL EXT "H" ON Resistance EXT "L" ON Resistance
Delay Pin Charge Current VIN=3.3V, VDLY=VFB=0V Delay Pin Discharge Current VIN=VFB=2.5V, VDLY=0.1V
Delay Pin Detector Threshold
VIN=3.3V, VFB=0V, VDLY=0V2V VIN=3.3V VIN=3.3V0V, VDLY=VFB=0V VIN=0V3.3V, VDLY=VFB=0V VIN=6V, VCE=0V VIN=6V, VCE=6V VIN=6V, VCE=0V VIN=6V, VCE=0V6V VIN=2.5V, VCE=2V0V
Soft-start Time UVLO Detector Threshold UVLO Detector Hysteresis Standby Current CE "H" Input Current CE "L" Input Current CE "H" Input Voltage CE "L" Input Voltage
Rev. 1.10
-6-
qR1211X002C Symbol Item VIN Operating Input Voltage VFB VFB Voltage Tolerance VFB/ VFB Voltage Temperature Coefficient T IFB VFB Input Current fOSC Oscillator Frequency fOSC/ Oscillator Frequency Temperature Coefficient T IDD1 Supply Current 1 maxdty Maximum Duty Cycle REXTH EXT "H" ON Resistance REXTL IDLY1 IDLY2 VDLY TSTART VUVLO1 VUVLO2 IAMP1 IAMP2 EXT "L" ON Resistance Delay Pin Charge Current
Delay Pin Discharge Current
Delay Pin Detector Threshold
Conditions VIN=3.3V -40C Topt 85C VIN=6V, VFB=0V or 6V VIN=3.3V, VDLY=VFB=0V -40C Topt 85C VIN=6V, VDLY=VFB=0V, EXT at no load VIN=3.3V, EXT "H" side VIN=3.3V, IEXT=-20mA VIN=3.3V, IEXT=20mA VIN=3.3V, VDLY=VFB=0V VIN=VFB=2.5V, VDLY=0.1V VIN=3.3V, VFB=0V, VDLY=0V2V VIN=3.3V VIN=3.3V0V, VDLY=VFB=0V VIN=0V3.3V, VDLY=VFB=0V VIN=3.3V, VAMP=1V, VFB=0.9V VIN=3.3V, VAMP=1V, VFB=1.1V
MIN. 2.5 0.985
TYP. 1.000 150
(Topt=25C) MAX. Unit 6.0 V 1.015 V ppm/C 0.1 360 A kHz kHz/C A % A mA V ms V V mA A
-0.1 240
300 0.6 300 90 5 3
82
500 94 10 6 7.0 9.0 1.05 16.0 2.3 0.18 1.50 75
2.0 2.5 0.95 5.0 2.1 0.08 0.45 25
4.5 5.5 1.00 10.5 2.2 0.13 0.90 50
Soft-start Time UVLO Detector Threshold UVLO Detector Hysteresis AMP "H" Output Current AMP "L" Output Current
Rev. 1.10
-7-
qR1211X002D Symbol VIN VFB VFB/ T IFB fOSC fOSC/ T IDD1
Item
Conditions
MIN. 2.5
TYP.
MAX. 6.0
Unit V V ppm/C
Operating Input Voltage VFB Voltage Tolerance VFB Voltage Temperature Coefficient VFB Input Current Oscillator Frequency Oscillator Frequency Temperature Coefficient Supply Current 1 VIN=3.3V -40C Topt 85C VIN=6V, VFB=0V or 6V VIN=3.3V, VDLY=VFB=0V -40C Topt 85C VIN=6V, VDLY=VFB=0V, EXT at no load VIN=3.3V, EXT "H" side VIN=3.3V, IEXT=-20mA VIN=3.3V, IEXT=20mA
0.985
1.000 150
1.015
-0.1 240 300 0.6 300 82 90 5 3 2.0 2.5 0.95 5.0 2.1 0.08 -0.5 -0.5 1.5 4.5 5.5 1.00 10.5 2.2 0.13 0
0.1 360
A kHz kHz/C
500 94 10 6 7.0 9.0 1.05 16.0 2.3 0.18 1 0.5 0.5 0.3
A % A mA V ms V V A A A V V
maxdty Maximum Duty Cycle REXTH REXTL IDLY1 IDLY2 VDLY EXT "H" ON Resistance EXT "L" ON Resistance
Delay Pin Charge Current VIN=3.3V, VDLY=VFB=0V Delay Pin Discharge Current VIN=VFB=2.5V, VDLY=0.1V
Delay Pin Detector Threshold
VIN=3.3V, VFB=0V, VDLY=0V2V
TSTART Soft-start Time VIN=3.3V VUVLO1 UVLO Detector Threshold VIN=3.3V0V, VDLY=VFB=0V VUVLO2 ISTB ICEH ICEL VCEH VCEL UVLO Detector Hysteresis Standby Current CE "H" Input Current CE "L" Input Current CE "H" Input Voltage CE "L" Input Voltage VIN=0V3.3V, VDLY=VFB=0V VIN=6V, VCE=0V VIN=6V, VCE=6V VIN=6V, VCE=0V VIN=6V, VCE=0V6V VIN=2.5V, VCE=2V0V
Rev. 1.10
-8-
s TYPICAL APPLICATIONS AND TECHNICAL NOTES
Inductor Diode
VIN C1 C2 DELAY
EXT VFB
NMOS
C4
R1 C3
R3 GND AMPOUT C5 R4
R2
NMOS: IRF7601 (International Rectifier) Inductor : LDR655312T-100 10H (TDK) for R1211X002A : LDR655312T-220 22H (TDK) for R1211X002C Diode: CRS02 (Toshiba) C1: 4.7F (Ceramic) R1: Output Voltage Setting Resistor 1 C2: 0.22F (Ceramic) R2: Output Voltage Setting Resistor 2 C3: 10F (Ceramic) R3: 30k C4: 680pF(Ceramic) R4: 30k C5: 2200pF(Ceramic) Inductor Diode
VIN C1 C2 GND DELAY
EXT VFB
NMOS
C4
R1 C3
R3 CE
R2
CE Control NMOS: IRF7601 (International Rectifier) Inductor: LDR655312T-100 10H (TDK) for R1211X002B LDR655312T-220 22H (TDK) for R1211X002D Diode: CRS02 (Toshiba) C1: 4.7F (Ceramic) R1: Setting Output Voltage Resistor1 C2: 0.22F (Ceramic) R2: Setting Output Voltage Resistor2 C3: 10F (Ceramic) R3 : 30k C4: 680pF(Ceramic) [Note] These example circuits may be applied to the output voltage requirement is 15V or less. If the output voltage requirement is 15V or more, ratings of NMOS and diode as shown above is over the limit, therefore, choose other external components.
Rev. 1.10
-9-
q Use a 1F or more capacitance value of bypass capacitor between VIN pin and GND, C1 as shown in the typical applications above. q In terms of the capacitor for setting delay time of the latch protection, C2 as shown in typical applications of the previous page, connect between Delay pin and GND pin of the IC with the minimum wiring distance. q Connect a 1F or more value of capacitor between VOUT and GND, C3 as shown in typical applications of the previous page. (Recommended value is from 10F to 22F.) If the operation of the composed DC/DC converter may be unstable, use a tantalum type capacitor instead of ceramic type. q Connect a capacitor between VOUT and the dividing point, C4 as shown in typical applications of the previous page. The capacitance value of C4 depends on divider resistors for output voltage setting. Typical value is between 100pF and 1000pF. q Output Voltage can be set with divider resistors for voltage setting, R1 and R2 as shown in typical applications of the previous page. Refer to the next formula. Output Voltage = VFBx(R1+R2)/R2 R1+R2=100k is recommended range of resistances. q The operation of Latch protection circuit is as follows: When the IC detects maximum duty cycle, charge to an external capacitor, C2 of DELAY pin starts. And maximum duty cycle continues and the voltage of DELAY pin reaches delay voltage detector threshold, VDLY, outputs "L" to EXT pin and turns off the external power MOSFET. To release the latch protection operation, make the IC be standby mode with CE pin and make it active in terms of B/D version. Otherwise, restart with power on. The delay time of latch protection can be calculated with C2, VDLY, and Delay Pin Charge Current, IDLY1, as in the next formula. t=C2xVDLY/IDLY1 Once after the maximum duty is detected and released before delay time, charge to the capacitor is halt and delay pin outputs "L". q As for R1211X002A/C version, the values and positioning of C4, C5, R3, and R4 shown in the above diagram are just an example combination. These are for making phase compensation. If the spike noise of VOUT may be large, the spike noise may be picked into VFB pin and make the operation unstable. In this case, a resistor R3, shown in typical applications of the previous page. The recommended resistance value of R3 is in the range from 10k to 50k. Then, noise level will be decreased. q As for R1211X002B/D version, EXT pin outputs GND level at standby mode. q Select the Power MOSFET, the diode, and the inductor within ratings (Voltage, Current, Power) of this IC. Choose the power MOSFET with low threshold voltage depending on Input Voltage to be able to turn on the FET completely. Choose the diode with low VF such as Shottky type, and with low reverse current IR, and with fast switching speed. When an external transistor is switching, spike voltage may be generated caused by an inductor, therefore recommended voltage tolerance of capacitor connected to VOUT is three times of setting voltage or more. The performance of power circuit with using this IC depends on external components. Choose the most suitable components for your application.
Rev. 1.10
- 10 -
s Output Current and Selection of External Components

i2
Inductor Diode
IOUT VOUT
VIN i1
Lx Tr
CL
GND
Discontinuous Mode
IL ILxmax IL
Continuous Mode
ILxmax
ILxmin ILxmin Tf Iconst t Ton T=1/fosc Toff Ton T=1/fosc Toff t
There are two modes, or discontinuous mode and continuous mode for the PWM step-up switching regulator depending on the continuous characteristic of inductor current. During on time of the transistor, when the voltage added on to the inductor is described as VIN, the current is VIN xt/L. Therefore, the electric power, PON, which is supplied with input side, can be described as in next formula. PON=VIN xt/L dt
0 TON 2
Formula 1
With the step-up circuit, electric power is supplied from power source also during off time. In this case, input current is described as (VOUT-VIN)xt/L, therefore electric power, POFF is described as in next formula.
Tf
POFF=VINx(VOUT-VIN)xt/L dt
0
Formula 2
In this formula, Tf means the time of which the energy saved in the inductance is being emitted. Thus average electric power, PAV is described as in the next formula. PAV=1/(Ton+Toff)x{VIN xt/L dt + VINx(VOUT-VIN)xt/L dt} Formula 3
0 0 TON 2 Tf
In PWM control, when Tf=Toff is true, the inductor current becomes continuos, then the operation of switching regulator becomes continuous mode. In the continuous mode, the deviation of the current is equal between on time and off time. VINxTon/L=(VOUT-VIN)xToff/L Formula 4
Further, the electric power, PAV is equal to output electric power, VOUTxIOUT, thus, IOUT = fOSC x VIN xTON /{2xL x(VOUT-VIN)}=VIN xTON/(2xLxVOUT) Formula 5 When IOUT becomes more than formula 5, the current flows through the inductor, then the mode becomes
2 2 2
Rev. 1.10
- 11 -
continuous. The continuous current through the inductor is described as Iconst, then, IOUT = fOSC xVIN xtON /(2xLx(VOUT-VIN))+VINxIconst/VOUT
2 2
Formula 6
In this moment, the peak current, ILxmax flowing through the inductor and the driver Tr. is described as follows: ILxmax = Iconst +VINxTon/L With the formula 4,6, and ILxmax is, ILxmax = VOUT/VINxIOUT+VINxTon/(2xL) Formula 8 Formula 7
Therefore, peak current is more than IOUT. Considering the value of ILxmax, the condition of input and output, and external components should be selected. In the formula 7, peak current ILxmax at discontinuous mode can be calculated. Put Iconst=0 in the formula. The explanation above is based on the ideal calculation, and the loss caused by Lx switch and external components is not included. The actual maximum output current is between 50% and 80% of the calculation. Especially, when the ILx is large, or VIN is low, the loss of VIN is generated with the on resistance of the switch. As for VOUT, Vf (as much as 0.3V) of the diode should be considered.
s TIMING CHART
q R1211X002A/R1211X002C
DTC
VREF SS EXT
VOUT
R1 R2 q R1211X002B/R1211X002D
VFB
AMPOUT
EXT
OP AMP
PWM Comparator
DTC
VREF SS EXT
VOUT
R1 R2
VFB
AMPOUT
EXT
OP AMP
PWM Comparator
Soft-start operation is starting from power-on as follows: (Step1) The voltage level of SS is rising gradually by constant current circuit of the IC and a capacitor. VREF level which is input to OP AMP is also gradually rising. VOUT is rising up to input voltage level just after the power-on, therefore, VFB voltage is rising up to the setting voltage with input voltage and the ration of R1 and R2. AMPOUT is at "L", and switching does not start. (Step2)
Rev. 1.10
- 12 -
When the voltage level of SS becomes the setting voltage with the ration of R1 and R2 or more, switching operation starts. VREF level gradually increases together with SS level. VOUT is also rising with balancing VREF and VFB. Duty cycle depends on the lowest level among AMPOUT, SS, and DTC of the 4 input terminals in the PWM comparator. (Step3) When SS reaches 1V, soft-start operation finishes. VREF becomes constant voltage (=1V). Then the switching operation becomes normal mode.
SS,VREF
VFB
SS VFB,VREF DTC AMPOUT AMPOUT
Step1
Step2
VOUT V IN
The operation of Latch protection circuit is as follows: When AMPOUT becomes "H" and the IC detects maximum duty cycle, charge to an external capacitor, C2 of DELAY pin starts. And maximum duty cycle continues and the voltage of DELAY pin reaches delay voltage detector threshold, VDLY, outputs "L" to EXT pin and turns off the external power MOSFET. To release the latch protection operation, make the IC be standby mode with CE pin and make it active in terms of R1211X002B/D version. Otherwise, make supply voltage down to UVLO detector threshold or lower, and make it rise up to the normal input voltage. During the soft-start time, if the duty cycle may be the maximum, protection circuit does not work and DELAY pin is fixed at GND level. The delay time of latch protection can be calculated with C2, VDLY, and Delay Pin Charge Current, IDLY1, as in the next formula. t=C2xVDLY/IDLY1 Once after the maximum duty is detected and released before delay time, charge to the capacitor is halt and delay pin outputs "L".
Output Short
AMPOUT AMPOUT VDLY DTC
Normal
DELAY maxduty Operation
Latched
EXT
Rev. 1.10
- 13 -
s TEST CIRCUITS
q R1211X002A/R1211X002C *Consumption Current Test
6V EXT
OSCILLOSCO OSCILLOSCOPE
*Oscillator Frequency, Maximum Duty Cycle, VFB Voltage Test 3.3V VIN
A
VIN
VFB GND DELAY
VFB GND DELAY
*EXT "H" ON Resistance
3.3V VIN EXT
OSCILLOSCOPE OSC ILLOSCO
*EXT "L" ON Resistance
3.3V VIN EXT 150 V GND V
FB
V FB GND DELAY
150
DELAY
*DELAY Pin Charge Current
3.3V VIN
*DELAY PIn Discharge Current
2.5V VIN
VFB GND
DELAY
VFB A GND DELAY A 0.1V
Rev. 1.10
- 14 -
*DELAY Pin Detector Threshold Voltage Test
3.3V VIN EXT
OSC OSCILLOSC OPE
*AMP "H" Output Current/"L" Output Current Test
3.3V VIN AMPOUT V FB A 1V
V FB GND DELAY GND DELAY
*UVLO Detector Threshold/Hysteresis Range Test
VIN EXT
OSC OSCILLOSC OPE
V FB GND DELAY
*Soft-start Time Test
Coil Diode V OUT
C2 Rout C1 C4 R4 R3 R1 OSC OSCILLOSCOPE ILLOSCOPE
C5 VIN C3 EXT AM T POU V FB GND DELA Y
NM OS
R2
Inductor (L) Diode (SD) Capacitors
: 22H (TDK LDR655312T-220) : CRS02 (Toshiba) C1: 680pF(Ceramic), C2: 22F (Tantalum)+2.2F (Ceramic), C3: 68F (Tantalum)+2.2F (Ceramic), C4: 2200pF(Ceramic), C5: 22F(Tantalum) NMOS Transistor : IRF7601 (International Rectifier) Resistors : R1: 90k, R2:10k, R3:30k, R4:30k, Rout:1k/330
Rev. 1.10
- 15 -
q
R1211X002B/R1211X002D *Consumption Current Test
6V EXT CE V FB GND DELAY
OSCILLOSCOPE OSCILLOSCOPE
*Oscillator Frequency, Maximum Duty Cycle, VFB Voltage Test 3.3V VIN
A
VIN CE V FB GND DELAY
*EXT "H" ON Resistance
3.3V VIN EXT CE V FB
OSCILLOSCOPE OSC ILLOSCOPE
*EXT "L" ON Resistance
3.3V
VIN
EXT CE V FB V 150
150
GND DELAY
GND DELAY
*DELAY Pin Charge Current
3.3V VIN CE V FB GND DELAY A
*DELAY PIn Discharge Current
2.5V
VIN CE V FB GND DELAY A 0.1V
Rev. 1.10
- 16 -
*DELAY Pin Detector Threshold Voltage Test
3.3V V IN EXT CE V FB GND DELAY
OSCILLOSCOPE OSCILLOSCOPE
*Standby Current Test
6V A VIN CE V FB GND DELAY
*UVLO Detector Threshold/Hysteresis Range Test
VIN EXT CE VFB GND DELAY
* CE "L" Input Current/"H" Input Current Test
VIN
OSCILLOSCOPE OSCILLOSCOPE
CE V FB GND DELAY
A 0V/6V
*CE "L" Input Voltage/"H" Input Voltage Test
VIN
EXT CE
OSCILLOSCO OSCILLOSCOPE
V FB GND DELAY
*Soft-start Time Test
Coil
C5 VIN C3 EXT CE V FB R3 GND DELAY R2 C1 0V/3.3V R1
VOUT
C2
OSCILLOSCO OSCILLOSCOPE
NMOS
Rout
Rev. 1.10
- 17 -
Inductor (L) Diode (SD) Capacitors
: 22H (TDK LDR655312T-220) : CRS02 (Toshiba) C1: 680pF(Ceramic), C2: 22F (Tantalum)+2.2F (Ceramic), C3: 68F (Tantalum)+2.2F (Ceramic), C5: 22F (Tantalum) NMOS Transistor : IRF7601 (International Rectifier) Resistors : R1: 90k, R2: 10k, R3: 30k
s TYPICAL CHARACTERISTICS
1) Output Voltage vs. Output Current
R1211X002A 5.1 Output Voltage VOUT[V] L=10uH VOUT=5V R1211X002A 10.2 Output Voltage VOUT [V] L=10uH VOUT=10V
5 VIN=2.5V VIN=3.3V
10 VIN=2.5V VIN=3.3V VIN=5.0V 9.8
4.9 1 10 100 Output Current IOUT [mA] L=10uH VOUT=15V 1000
1
10 100 Output Current IOUT [mA] L=10uH VOUT=5V
1000
R1211X002A 15.3
R1211X002B 5.1
Output Voltage VOUT [V]
15 VIN=2.5V VIN=3.3V VIN=5.0V 14.7 1 10 100 Output Current IOUT [mA] L=10uH VOUT=10V 1000
Output Voltage VOUT [V]
5
VIN=2.5V VIN=3.3V
4.9 1 10 100 Output Current IOUT [mA] 1000
R1211X002B 10.2 Output Voltage VOUT [V]
R1211X002B 15.3 Output Voltage VOUT[V]
L=10uH VOUT=15V
10 VIN=2.5V VIN=3.3V VIN=5.0V 9.8 1 10 100 Output Current IOUT [mA] 1000
15
VIN=2.5V VIN=3.3V VIN=5.0V 1 10 100 Output Current IOUT [mA] 1000
14.7
Rev. 1.10
- 18 -
R1211X002C 5.1 Output Voltage V [V] OUT
L=22uH VOUT=5V
R1211X002C 10.2 Output Voltage V [V] OUT
L=22uH VOUT=10V
5 VIN=2.5V VIN=3.3V
10 VIN=2.5V VIN=3.3V VIN=5.0V
4.9 1 10 100 Output Current IOUT [mA] R1211X002C 15.3 L=22uH VOUT=15V 1000
9.8 1 10 100 Output Current IOUT [mA] R1211X002D 5.1 Output Voltage V [V] OUT L=22uH VOUT=5V 1000
Output Voltage V [V] OUT
15 VIN=2.5V VIN=3.3V VIN=5.0V
5
VIN=2.5V VIN=3.3V 4.9
14.7 1 10 100 Output Current IOUT [mA] R1211X002D 10.2 L=22uH VOUT=10V 1000
1
10 100 Output Current IOUT [mA] R1211X002D L=22uH VOUT=15V
1000
15.3
Output Voltage V [V] OUT
10 VIN=2.5V VIN=3.3V VIN=5.0V 9.8 1 10 100 Output Current IOUT [mA] 1000
Output Voltage V [V] OUT
15
VIN=2.5V VIN=3.3V VIN=5.0V
14.7 1 10 100 Output Current IOUT [mA] 1000
Rev. 1.10
- 19 -
2) Efficiency vs. Output Current
R1211X002A 100 80 Efficiency [%] Efficiency [%] 60 40 20 0 1 10 100 Output Current IOUT [mA] L=10uH VOUT=15V 1000 L=10uH VOUT=5V R1211X002A 100 80 60 40 20 0 1 10 100 Output Current IOUT [mA] R1211X002B 100 80 Efficiency [%] 60 40 20 0 1 10 100 Output Current IOUT [mA] R1211X002B 100 80 Efficiency [%] Efficiency [%] 60 40 20 0 1 10 100 Output Current IOUT [mA] 1000 VIN=2.5V VIN=3.3V VIN=5.0V L=10uH VOUT=10V 1000 1 10 100 Output Current IOUT [mA] R1211X002B 100 80 60 40 20 0 1 10 100 Output Current IOUT [mA] 1000 VIN=2.5V VIN=3.3V VIN=5.0V L=10uH VOUT=15V 1000 VIN=2.5V VIN=3.3V L=10uH VOUT=5V 1000 VIN=2.5V VIN=3.3V VIN=5.0V L=10uH VOUT=10V
VIN=2.5V VIN=3.3V
R1211X002A 100 80 Efficiency [%] 60 40 20 0
VIN=2.5V VIN=3.3V VIN=5.0V
Rev. 1.10
- 20 -
R1211X002C 100 80
L=22uH VOUT=5V
R1211X002C 100 80 Efficiency [%] 60
L=22uH VOUT=10V
Efficiency [%]
60 VIN=2.5V 40 20 0 1 10 100 Output Current IOUT [mA] R1211X002C L=22uH VOUT=15V 1000 VIN=3.3V
VIN=2.5V 40 20 0 1 10 100 Output Current IOUT [mA] R1211X002D L=22uH VOUT=5V 1000 VIN=3.3V VIN=5.0V
100 80 Efficiency [%] 60 40 20 0 1
100 80 Efficiency [%] 60 40 20 0
VIN=2.5V VIN=3.3V VIN=5.0V
VIN=2.5V VIN=3.3V
10 100 Output Current IOUT [mA] R1211X002D L=22uH VOUT=10V
1000
1
10 100 Output Current IOUT [mA] R1211X002D L=22uH VOUT=15V
1000
100 80 Efficiency [%]
100 80 Efficiency [%] 60 40 20 0
60 40 20 0 1 10 100 Output Current IOUT [mA] 1000 VIN=2.5V VIN=3.3V VIN=5.0V
VIN=2.5V VIN=3.3V VIN=5.0V
1
10 100 Output Current IOUT [mA]
1000
Rev. 1.10
- 21 -
3) VFB Voltage vs. Input Voltage (Topt =25C)
R1211X002X 1015 1010 VFB Voltage [mV] 1005 1000 995 990 985 2 3 4 5 Input Voltage VIN [V] 6
4) Oscillator Frequency vs. Input Voltage (Topt=25C)
R1211X002A/B 900 Oscillator Frequency [kHz] Oscillator Frequency[kHz] 400 R1211X002C/D
800
350
700
300
600
250
500 2 3 4 Input Voltage VIN [V] 5 6
200 2 3 4 5 Input Voltage VIN [V] 6
5) Supply Current vs. Input Voltage (Topt=25C)
R1211X002A 600 500 Supply Current [uA] 400 300 200 100 0 2 3 4 5 Input Voltage VIN [V] 6 Supply Current [uA] 600 500 400 300 200 100 0 2 3 4 5 Input Voltage VIN [V] 6 R1211X002B
Rev. 1.10
- 22 -
R1211X002C 400 400
R1211X002D
Supply Current [uA]
200
100
Supply Current [uA]
300
300
200
100
0 2 3 4 5 Input Voltage VIN [V] 6
0 2 3 4 5 Input Voltage VIN [V] 6
6) Maximum Duty Cycle vs. Input Voltage (Topt=25C)
R1211X002A/B 96 94 Maximum Duty Cycle [%] Maximum Duty Cycle [%] 92 90 88 86 84 82 80 2 3 4 5 Input Voltage VIN [V] 6 96 94 92 90 88 86 84 82 80 2 3 4 5 Input Voltage VIN [V] 6 R1211X002C/D
7) VFB Voltage vs. Temperature
R1211X002X 1015 1010 VFB Voltage [mV] 1005 1000 995 990 985 -50 -25 0 25 50 75 Temperature Topt (C) 100 VIN=3.3V
Rev. 1.10
- 23 -
8) Oscillator Frequency vs. Temperature
R1211X002A/B VIN=3.3V 900 Oscillator Frequency[kHz] Oscillator Frequency [kHz] 400 R1211X002C/D VIN=3.3V
800
350
700
300
600
250
500 -50 -25 0 25 50 Temperature Topt (C) 75 100
200 -50 -25 0 25 50 75 Temperature Topt (C) 100
9) Supply Current vs. Temperature
R1211X002A 600 500 Supply Current[uA] 400 300 200 100 0 -50 -25 0 25 50 75 Temperature Topt (C) VIN=3.3V 400 100 VIN=3.3V 600 500 Supply Current [uA] 400 300 200 100 0 -50 -25 0 25 50 Temperature Topt (C) VIN=3.3V 75 100 R1211X002B VIN=3.3V
R1211X002C 400
R1211X002D
Supply Current [uA]
Supply Current [uA]
300
300
200
200
100
100
0 -50 -25 0 25 50 75 Temperature Topt (C) 100
0 -50 -25 0 25 50 Temperature Topt(C) 75 100
Rev. 1.10
- 24 -
10) Maximum Duty Cycle vs. Temperature
R1211X002A/B 96 94 Maximum Duty Cycle [%] 92 90 88 86 84 82 80 -50 -25 0 25 50 Temperature Topt (C) 75 100 Maximum Duty Cycle [%] VIN=3.3V 96 94 92 90 88 86 84 82 80 -50 -25 0 25 50 Temperature Topt(C) 75 100 R1211X002C/D VIN=3.3V
11) EXT"H" Output Current vs. Temperature
R1211X002X 8 EXT"H"ON Resistance [ohm] 7 6 5 4 3 2 -50 -25 0 25 50 Temperature Topt (C) 75 100 VIN=3.3V
12) EXT"L" Output Current vs. Temperature
R1211X002X 5 EXT"L"ON Resistance [ohm] VIN=3.3V
4
3
2
1 -50 -25 0 25 50 75 100 Temperature Topt(C)
Rev. 1.10
- 25 -
13) Soft-start Time vs. Temperature
R1211X002A/B 16 14 Soft-start Time [ms] 12 10 8 6 -50 -25 0 25 50 Temperature Topt (C) 75 100 VIN=3.3V 16 14 Soft-start Time [ms] 12 10 8 6 -50 -25 0 25 50 Temperature Topt(C) 75 100 R1211X002C/D VIN=3.3V
14) UVLO Detector Threshold vs. Temperature
R1211X002X 2300 UVLO Detector Threshold [mV] VIN=3.3V
2250
2200
2150
2100 -50 -25 0 25 50 Temperature Topt(C) 75 100
15) AMP "H" Output Current vs. Temperature
R1211X002A/C 1600 AMP"H" Output Current [uA] 1400 1200 1000 800 600 400 -50 -25 0 25 50 75 Temperature Topt (C) 100 VIN=3.3V
Rev. 1.10
- 26 -
16) AMP "L" Output Current vs. Temperature
R1211X002A 80 AMP"L" Output Current [uA] 70 60 50 40 30 20 -50 -25 0 25 50 Temperature Topt (C) 75 100 AMP"L" Output Current [uA] VIN=3.3V 80 70 60 50 40 30 20 -50 -25 0 25 50 75 Temperature Topt (C) 100 R1211X002C VIN=3.3V
17) DELAY Pin Charge Current vs. Temperature
R1211X002A/B 7 DELAY Pin Charge Current [uA] DELAY Pin Charge Current [uA] 6 5 4 3 2 -50 -25 0 25 50 Temperature Topt (C) 75 100 VIN=3.3V 7 6 5 4 3 2 -50 -25 0 25 50 75 100 Temperature Topt (C) R1211X002C/D VIN=3.3V
18) DELAY Pin Detector Threshold vs. Temperature
R1211X002X VIN=3.3V
DELAY Pin Detector Threshold [mV]
1040
1020
1000
980
960 -50 -25 0 25 50 75 Temperature Topt (C) 100
Rev. 1.10
- 27 -
19) DELAY Pin Discharge Current vs. Temperature
R1211X002X DELAY Pin Discharge Current [uA] 10 8 6 4 2 0 -50 -25 0 25 50 Temperature Topt (C) 75 100 VIN=2.5V
20) CE "L" Input Voltage vs. Temperature
R1211X002B/D 1200 1100 1000 900 800 700 600 -50 -25 0 25 50 75 Temperature Topt (C) 100 VIN=2.5V
21) CE "H" Input Voltage vs. Temperature
R1211X002B/D VIN=6.0V
CE"L" Input Voltage [mV]
1200 CE"H" Input Voltage [mV] 1100 1000 900 800 700 600 -50 -25 0 25 50 75 Temperature Topt (C) 100
Rev. 1.10
- 28 -
22) Standby Current vs. Temperature
R1211X002B/D VIN=6.0V
1 0.8 Standby Current [uA] 0.6 0.4 0.2 0 -0.2 -50 -25 0 25 50 Temperature Topt (C) 75 100
23) Load Transient Response
R1211X002A 5.6 L=10uH VIN=3.3V , C3=22uF VOUT=5V , IOUT=1-100mA
Output Voltage V [V] OUT
VOUT 5.0
200
100 IOUT 4.4 Time [5ms/div] 0
R1211X002A 11.2 VOUT 10.0
200
100 IOUT 8.8 Time [5ms/div] 0
R1211X002A Output Voltage VOUT [V] 16.8 VOUT 15.0
200 100
IOUT 13.2 Time [5ms/div] 0
Rev. 1.10
- 29 -
Output Current IOUT [mA]
L=10uH VIN=3.3V , C3=22uF VOUT=15V , IOUT=1-50mA
300
Output Current IOUT [mA]
L=10uH VIN=3.3V , C3=22uF VOUT=10V , IOUT=1-100mA
Output Voltage V [V] OUT
300
Output Current IOUT [mA]
300
R1211X002B Output Voltage V [V] OUT 5.6
5.0
VOUT
200 100
IOUT 4.4 Time [5ms/div] 0
R1211X002B Output Voltage V [V] OUT 11.2
VOUT 10.0
200 100
8.8
IOUT Time [5ms/div]
0
R1211X002B Output Voltage VOUT [V] 16.8
15.0
VOUT
200 100
13.2
IOUT Time [5ms/div]
0
R1211X002C Output Voltage V [V] OUT 5.6 VOUT 5.0
200 100
IOUT 4.4 Time [5ms/div] 0
Rev. 1.10
- 30 -
Output Current IOUT [mA]
L=22uH VIN=3.3V , C3=22uF VOUT=5V , IOUT=1-100mA
300
Output Current IOUT [mA]
L=10uH VIN=3.3V , C3=22uF VOUT=15V , IOUT=1-50mA
300
Output Current IOUT [mA]
L=10uH VIN=3.3V , C3=22uF VOUT=10V , IOUT=1-100mA
300
Output Current IOUT [mA]
L=10uH VIN=3.3V , C3=22uF VOUT=5V , IOUT=1-100mA
300
R1211X002C Output Voltage V [V] OUT 11.2 VOUT 10.0
200 100
IOUT 8.8 Time [5ms/div] 0
R1211X002C Output Voltage V [V] OUT 16.8 VOUT 15.0
200 100
13.2
IOUT Time [5ms/div]
0
R1211X002D Output Voltage V [V] OUT 5.6 VOUT 5.0
300 200 100
IOUT 4.4 Time [5ms/div] 0
R1211X002D Output Voltage V [V] OUT 11.2 VOUT 10.0
200 100
IOUT 8.8 Time [5ms/div] 0
Rev. 1.10
- 31 -
Output Current IOUT [mA]
L=22uH VIN=3.3V , C3=22uF VOUT=10V , IOUT=1-100mA
300
Output Current IOUT [mA]
L=22uH VIN=3.3V , C3=22uF VOUT=5V , IOUT=1-100mA
Output Current IOUT [mA]
L=22uH VIN=3.3V , C3=22uF VOUT=15V , IOUT=1-50mA
300
Output Current IOUT [mA]
L=22uH VIN=3.3V , C3=22uF VOUT=10V , IOUT=1-100mA
300
R1211X002D Output Voltage V [V] OUT 16.8 VOUT 15.0
200 100
IOUT 13.2 Time [5ms/div] 0
24) Power-on Response
R1211X002A 16 14 Output Voltage [V] 12 10 8 6 4 2 0 0 5 10 15 20 25 VIN (b)VOUT=10V (a)VOUT=5V L=10uH VIN=3.3V , IOUT=10mA (c)VOUT=15V Output Voltage [V] R1211X002B 16 14 12 10 8 6 4 2 0 0 5 10 15 20 25 VIN (b)VOUT=10V (a)VOUT=5V L=10uH VIN=3.3V , IOUT=10mA (c)VOUT=15V
Time [5ms/div] R1211X002C 16 14 Output Voltage [V] 12 10 8 6 4 2 0 0 5 10 15 Time [5ms/div] 20 25 VIN (b)VOUT=10V (a)VOUT=5V L=22uH VIN=3.3V , IOUT=10mA (c)VOUT=15V Output Voltage [V] R1211X002D 16 14 12 10 8 6 4 2 0 0 5
Time [5ms/div] L=22uH VIN=3.3V , IOUT=10mA (c)VOUT=15V
(b)VOUT=10V (a)VOUT=5V
VIN 10 15 20 25
Time [5ms/div]
Rev. 1.10
- 32 -
Output Current IOUT [mA]
L=22uH VIN=3.3V , C3=22uF VOUT=15V , IOUT=1-50mA
300
25) Turn-on speed with CE pin
R1211X002B 16 14 Output Voltage [V] 12 10 8 6 4 2 0 0 5 10 15 20 25 (b)VOUT=10V (a)VOUT=5V CE L=10uH VIN=3.3V , IOUT=10mA (c)VOUT=15V Output Voltage [V] R1211X002D 16 14 12 10 8 6 4 2 0 0 5 10 15 20 25 CE (b)VOUT=10V (a)VOUT=5V L=22uH VIN=3.3V , IOUT=10mA (c)VOUT=15V
Time [5ms/div]
Time [5ms/div]
Rev. 1.10
- 33 -


▲Up To Search▲   

 
Price & Availability of R1211N002A

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X